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Review



Review

——» agent

state s,
reward I

environment «—

MDP = {S, A, P(s'|s,a),R(s)}

action a,

Given a model, we can plan using policy or value iteration.

But what if we aren’t given the model?

1. Model-based approach: estimate P(s'|s, a) from

experience.

2. Model-free approach: more on this today.
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Stochastic approximation theory (con't)

How to estimate the mean of a random variable X from 11D samples?
X1, X2, X3, X4, X5, Xg, X7, Xg, Xo,...
2. Incremental update
Initialize: o = 0
Update: u; = (1—ap)pi—1 + aeX for «a; €(0,7)
The update is a convex sum of the old estimate and latest

sample.
It can also be written as:

pe = pre—1 + oe(Xe — pre—1)

The corrective term is known as a temporal difference.

This is the simplest example of a temporal difference (TD)
update.
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Taking Averages Sample by Sample

What are the effects of using a higher step size (or learning
rate) a when updating p;?

A. It gives more weight to recent samples.

B. It helps the estimate adapt more quickly to changes in
the data.

C. It reduces sensitivity to noise and outliers.
D. Aand B
E. A B,and C
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Temporal differences

- Update rule:

pe = pe—1 + ar(Xe — pe—1)

For convergence of the stochastic approximation estimate
u to the true mean E[X], what conditions must the step
sizes ay satisfy?

o0 o0
A. Zat:ooand Za? < 0
t=1

=1
o0 o0

B. Zat<ooand Za%zoo
t=1 t=1
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Temporal differences

- Update rule:

Note how the corrective
pe = pe—r + ar(Xe — pie—1) term is small on average
when p;—q = E[X]

- Theorem: u: — E[X] as t — oo with probability 1 if

(i) io‘t = oo (diverges)
t=1

and (i) Y af < oo (converges)
t=1

- Intuition:

(i) o decays sufficiently slowly to incorporate many examples
(i) o decays sufficiently fast to converge in the limit
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Temporal differences

- Update rule:
peer = g+ ae(Xep — pe)

VH»‘I(SE) = \/;(Sc) + aV(St) |:Xt — \/(S):|

But what is x;?
TD estimate of the expected future reward.

Vipa(st) = Vil(st) + av(st)|R(st) + WVi(St1) — Vilst)
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Model-free policy evaluation

How to estimate V™ (s) directly from experience w/o knowing
P(s'|s,a)?

- Explore state space via policy =

action m(So) 7(s1)
State s9 —mm 4 — S
reward rg I I

- Bellman equation (BE)

VT (s) Z P(s'|s, w(s))V™(S')
- Temporal difference prediction
Initialize: Vo(s) = 0 forall seS
Update: Viq(st) = Vi(s) + au(St) [R(Sf) + YVi(St) — \/[(sf)}
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Model-free policy evaluation

How to estimate V™ (s) directly from experience w/o knowing
P(s'|s,a)?

- Explore state space via policy =

action 7(So) 7(s1)
State s9 —mm 4 — S
reward rg I I

- Bellman equation (BE)
VT(s) = R(s) + 7> _P(s'[s, w(s)V™(s)

- Temporal difference prediction

Initialize: Vo(s) = 0 forall seS
Update: Vt+1(st) = \/g(Sg) + OZV(St) [ R(St) + ”y’Vt(St+1) _Vf(Sg)
—— —_—— —

previous step sample from right side of BE 12/ 24



TD prediction

- Incremental, model-free update

The state value function V™(s) is iteratively re-estimated from
the most recent experience at each time step:

action 7(St)
state St —————  Stuq
reward re lti

Vera(se) = Vils) + av(se) [R(s) + Wa(s41) = Vils1)|

- Asymptotic convergence

Under suitable conditions, the TD update converges in the limit:

Vi(s) = V7(s) as t—oo forall ses

13/ 24



Assume that each state s € S is visited infinitely often by policy .

Allow the step size a,(s) in each state s € S to depend on the
number of previous visits v to the state.

Assume the step sizes satisfy:

Za\,(s) = o0 and Zaé(s) < 00.
v=1 v=1

Then the TD update
Ver(se) = Vilse) + av(se) [R(se) +Velsen) = Vi(s0)
converges with probability one:
Vi(s) = V™(s) as t— .
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Theory versus practice

- Theory

For rigorous guarantees of convergence, agents should
use step sizes that satisfy

Zav(s) = and Zaﬁ(s) < o0.
v=1 v=1

- Practice

Many implementations choose small but constant step
sizes.

Remember — the MDP may only be an approximation to a
world that is not completely stationary!

In this situation, small constant step sizes are justified.
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Model-free RL

- Motivation

How to optimize policy #* without model P(s’|s,a)?
How to estimate Q*(s, a) without model P(s'|s,a)?

- Bellman equation for optimal policy:
Q*(s,a) = R(s)+vY_P(s'ls,a)v(s)
Sl

= R(S)+~ Z P(s'ls,a) max [Q*(s’,a")]

a
Equivalently, if we sample many transitions s — &/,
we must find that

Q*(s,Cl) = Eg {R(S) +’ymaz;x [Q*(S’,G/)]
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One-step Q-learning

- Explore state space at random:

action ao ay
state s —4mM8— S —— S
reward rg I I

- Incremental update

Initialize Qp(s,a) = 0 forall (s,a) € S x A.
Then update as follows:

Q[+1(5t,at) = Q;(Sc.@c) + « rt+"/ma/XQt(St+1,G/)—Q;(Sc,ac)
—— a

previous

. TD target
estimate

This update is easy to implement, experience-based, and
model-free.

- Q-learning is off-policy i.e. independent of current behavior.
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Convergence of one-step Q-learning

- Theorem (sketch)

If each state-action pair is visited infinitely many times,
and each pair's step size a(s, a) is appropriately decayed,
then these estimates converge (asymptotically):

tlim Qi(s,a) — Q*(s,a) with probability 1
—00

- Practice

It is common to use a small but constant step size.
An optimal policy 7* can be incrementally estimated by

me(S) = argmax, [Qt(s, a)} :
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Exploration/Exploitation Tradeoff

- Experience
action ag aq
state 59 —4m— 5 —— 5
reward rg I I
- Update

Qey1(st,ar) = Qilse.ar) + Oé[rt +ymax Q(S41,a’) — Qu(se, ar)
—— a

previous

. TD target
estimate

- Fundamental tradeoff

The agent must explore the full state-action space to converge.
But it also must exploit high-reward behaviors to converge
quickly.
How to balance?
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Exploration strategies

1. Random exploration

Choose action a; at random for each state s;.
Q-learning will converge—but slowly—with this choice.

2. Greedy exploration

Choose action a; = arg maxq Q¢(S¢, Q).
Q-learning is not guaranteed to converge.

3. e-greedy exploration

A compromise: explore greedily with probability 1 — €
and randomly with probability ¢; this suffices to converge.
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Algorithm

A Algorithm 4 (Q-learning)

Input : MDP M = (S, 80, 4, Pu(s' | 8),7(s,a,5))
Output : Q-function Q

Initialise Q arbitrarily; e.g., Q(s,a) <— 0 for all s and a

repeat
s < the first state in episode e
repeat (for each step in episode e)
Select action a to apply in s;
e.g. using @ and a multi-armed bandit algorithm such as e-greedy
Execute action a in state s
Observe reward r and new state s’
§+ r+v-maxyQ(s,a’) — Q(s,a)
Q(s,a) + Q(s,a) +a-d
s« ¢
until s is the last state of episode e (a terminal state)
until @) converges
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Course Evaluations

@
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https://academicaffairs.ucsd.edu/Modules/Evals/

That's all folks!
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