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Review



Review

 environment 

 agent 

 state st 
 reward rt 

 action at 

MDP = {S,A,P(s′|s,a),R(s)}

Given a model, we can plan using policy or value iteration.
But what if we aren’t given the model?

1. Model-based approach: estimate P̂(s′|s,a) from
experience.

2. Model-free approach: more on this today.
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Stochastic approximation theory (con’t)

How to estimate the mean of a random variable X from IID samples?

x1, x2, x3, x4, x5, x6, x7, x8, x9, . . .
2. Incremental update

Initialize: µ0 = 0
Update: µt = (1−αt)µt−1 + αtxt for αt ∈ (0, 1)

The update is a convex sum of the old estimate and latest
sample.
It can also be written as:

µt = µt−1 + αt(xt − µt−1)

The corrective term xt−µt−1 is known as a temporal difference.
This is the simplest example of a temporal difference (TD)
update.
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Taking Averages Sample by Sample

What are the effects of using a higher step size (or learning
rate) α when updating µt?

A. It gives more weight to recent samples.

B. It helps the estimate adapt more quickly to changes in
the data.

C. It reduces sensitivity to noise and outliers.

D. A and B

E. A, B, and C
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Temporal differences

• Update rule:

µt = µt−1 + αt(xt − µt−1)

Note how the corrective
term is small on average
when µt−1 ≈ E[X]

For convergence of the stochastic approximation estimate
µt to the true mean E[X], what conditions must the step
sizes αt satisfy?

A.
∞∑
t=1

αt = ∞ and
∞∑
t=1

α2t < ∞

B.
∞∑
t=1

αt < ∞ and
∞∑
t=1

α2t = ∞

7 / 24



Temporal differences

• Update rule:

µt = µt−1 + αt(xt − µt−1)

Note how the corrective
term is small on average
when µt−1 ≈ E[X]

• Theorem: µt → E[X] as t → ∞ with probability 1 if

(i)
∞∑
t=1

αt = ∞ (diverges)

and (ii)
∞∑
t=1

α2t < ∞ (converges)

• Intuition:

(i) αt decays sufficiently slowly to incorporate many examples
(ii) αt decays sufficiently fast to converge in the limit
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Temporal differences

• Update rule:
µt+1 = µt + αt(xt+1 − µt)

Vt+1(st) = Vt(st) + αv(st)
[
xt − Vt(st)

]

But what is xt?
TD estimate of the expected future reward.

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]
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TD Prediction



Model-free policy evaluation

How to estimate Vπ(s) directly from experience w/o knowing
P(s′|s,a)?

• Explore state space via policy π

action π(s0) π(s1)
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Bellman equation (BE)

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π(s))Vπ(s′)

• Temporal difference prediction

Initialize: V0(s) = 0 for all s ∈ S

Update: Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]
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Model-free policy evaluation

How to estimate Vπ(s) directly from experience w/o knowing
P(s′|s,a)?

• Explore state space via policy π

action π(s0) π(s1)
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Bellman equation (BE)

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π(s))Vπ(s′)

• Temporal difference prediction

Initialize: V0(s) = 0 for all s ∈ S

Update: Vt+1(st) = Vt(st)︸ ︷︷ ︸
previous
estimate

+ αv(st)︸ ︷︷ ︸
step
size

[
R(st) + γVt(st+1)︸ ︷︷ ︸
sample from right side of BE

−Vt(st)
]
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TD prediction

• Incremental, model-free update

The state value function Vπ(s) is iteratively re-estimated from
the most recent experience at each time step:

action π(st)
state st −−−−−−→ st+1

reward rt rt+1

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]

• Asymptotic convergence

Under suitable conditions, the TD update converges in the limit:

Vt(s) → Vπ(s) as t → ∞ for all s ∈ S
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Theorem

Assume that each state s ∈ S is visited infinitely often by policy π.

Allow the step size αv(s) in each state s ∈ S to depend on the
number of previous visits v to the state.

Assume the step sizes satisfy:
∞∑
v=1

αv(s) = ∞ and
∞∑
v=1

α2v(s) < ∞.

Then the TD update

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]
converges with probability one:

Vt(s) → Vπ(s) as t → ∞.
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Theory versus practice

• Theory

For rigorous guarantees of convergence, agents should
use step sizes that satisfy

∞∑
v=1

αv(s) = ∞ and
∞∑
v=1

α2v(s) < ∞.

• Practice

Many implementations choose small but constant step
sizes.

Remember — the MDP may only be an approximation to a
world that is not completely stationary!

In this situation, small constant step sizes are justified.
15 / 24



Q-learning



Model-free RL

• Motivation

How to optimize policy π∗ without model P(s′|s,a)?
How to estimate Q∗(s,a) without model P(s′|s,a)?

• Bellman equation for optimal policy:

Q∗(s,a) = R(s) + γ
∑
s′
P(s′|s,a)V∗(s′)

= R(s) + γ
∑
s′
P(s′|s,a)max

a′

[
Q∗(s′,a′)

]
Equivalently, if we sample many transitions s

a
−−−→ s′,

we must find that

Q∗(s,a) = E s′
[
R(s) + γmax

a′

[
Q∗(s′,a′)

]]
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One-step Q-learning

• Explore state space at random:

action a0 a1
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Incremental update

Initialize Q0(s,a) = 0 for all (s,a) ∈ S ×A.
Then update as follows:

Qt+1(st,at) = Qt(st,at)︸ ︷︷ ︸
previous
estimate

+ α
[
rt + γmax

a′
Qt(st+1,a′)︸ ︷︷ ︸

TD target

− Qt(st,at)
]

This update is easy to implement, experience-based, and
model-free.

• Q-learning is off-policy i.e. independent of current behavior.
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Convergence of one-step Q-learning

• Theorem (sketch)

If each state-action pair is visited infinitely many times,
and each pair’s step size α(s,a) is appropriately decayed,
then these estimates converge (asymptotically):

lim
t→∞

Qt(s,a) → Q∗(s,a) with probability 1

• Practice

It is common to use a small but constant step size.
An optimal policy π∗ can be incrementally estimated by

πt(s) = argmaxa

[
Qt(s,a)

]
.
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Exploration/Exploitation Tradeoff

• Experience

action a0 a1
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Update

Qt+1(st,at) = Qt(st,at)︸ ︷︷ ︸
previous
estimate

+ α
[
rt + γmax

a′
Qt(st+1,a′)︸ ︷︷ ︸

TD target

− Qt(st,at)
]

• Fundamental tradeoff

The agent must explore the full state-action space to converge.
But it also must exploit high-reward behaviors to converge
quickly.
How to balance?
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Exploration strategies

1. Random exploration

Choose action at at random for each state st.
Q-learning will converge—but slowly—with this choice.

2. Greedy exploration

Choose action at = argmaxa Qt(st,a).
Q-learning is not guaranteed to converge.

3. ε-greedy exploration

A compromise: explore greedily with probability 1− ε

and randomly with probability ε; this suffices to converge.
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Algorithm
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Course Evaluations

Link
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https://academicaffairs.ucsd.edu/Modules/Evals/


That’s all folks!
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